Macroscopic Model for Head-On Binary Droplet Collisions in a Gaseous Medium.
نویسنده
چکیده
In this Letter, coalescence-bouncing transitions of head-on binary droplet collisions are predicted by a novel macroscopic model based entirely on fundamental laws of physics. By making use of the lubrication theory of Zhang and Law [Phys. Fluids 23, 042102 (2011)], we have modified the Navier-Stokes equations to accurately account for the rarefied nature of the interdroplet gas film. Through the disjoint pressure model, we have incorporated the intermolecular van der Waals forces. Our model does not use any adjustable (empirical) parameters. It therefore encompasses an extreme range of length scales (more than 5 orders of magnitude): from those of the external flow in excess of the droplet size (a few hundred μm) to the effective range of the van der Waals force around 10 nm. A state of the art moving adaptive mesh method, capable of resolving all the relevant length scales, has been employed. Our numerical simulations are able to capture the coalescence-bouncing and bouncing-coalescence transitions that are observed as the collision intensity increases. The predicted transition Weber numbers for tetradecane and water droplet collisions at different pressures show good agreement with published experimental values. Our study also sheds new light on the roles of gas density, droplet size, and mean free path in the rupture of the gas film.
منابع مشابه
Analysis and modeling of droplet-droplet interaction and particle-droplet interaction in dispersions
Droplet (fluid) -droplet (fluid) interaction: A numerical investigation of binary droplet collisions in a gaseous phase has been conducted as part of the coalescence modeling project. A volume of fluid (VOF) based interface capturing method, which is characterized by introducing an extra artificial compression term into the volume-fraction transport equation, is employed to capture the liquid-g...
متن کاملBinary droplet collision simulations by a multiphase cascaded lattice Boltzmann method
Articles you may be interested in Study for optical manipulation of a surfactant-covered droplet using lattice Boltzmann method Simulations of binary drop collisions with a multiple-relaxation-time lattice-Boltzmann model Three-dimensional binary droplet collisions are studied using a multiphase cascaded lattice Boltzmann method (LBM). With this model it is possible to simulate collisions with ...
متن کاملA Theoretical Mass Transfer Approach for Prediction of Droplets Growth Inside Supersonic Laval Nozzle
Proper estimation of droplet growth rate plays a crucial role on appropriate prediction of supersonic separators performance for separation of fine droplets from a gas stream. Up to now, all available researches employ empirical or semi-empirical correlations to define the relationship between droplet growth rate (dr/dt) and other operating variables such as temperatures (T and TL), Pressure (P...
متن کاملEvaluation of macroscopic water extraction model for salinity and water stress in saffron yield production
Water scarcity and salinity are important limitations for saffron (Crocus sativus L.) production in arid and semi-arid regions. The purpose of this research was to study the interaction effects of water salinity and deficit irrigation on the macroscopic water extraction model for saffron. The effect of salinity and water stress on root-water uptake coefficient was determined by additive and mul...
متن کاملNumerical Simulation of Combustion with Porous Medium in I.C. Engine
Porous media has interesting features in compared with free flame combustion due to the extended of the lean flammability limits and lower emissions. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 117 21 شماره
صفحات -
تاریخ انتشار 2016